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1, J"0DUCrIOH OF TRE POLARfZATI01 POTENTIAL 

1. General System of Radial Equations 

The problem of computing the  e f f ec t ive  cros6 8ections of 
e l ec t ron  collieionr, with atoms o r  ion8 amount6 t o  t h e  solution of 
an i n f i n i t e  system of intogro-dif  f e r e n t i a l  equatione , In order t o  
conduct real computation6 taking i n t o  account the proper t ies  of 
atom eynmctrj, it is necessary t h a t  these equations be radial  equa- 
t i o n s  of t h e  Hartree-Fock mult i f igurat ional  type Such equations 
were obtained in the general cam i n  reference E l l .  Naturally,  the 
s o l u t i o n  of an i n f i n i t e  eyetern i n  a general case is iatp08Sibb; 

howewer, the f i r s t  approximation permits already t o  rccount for dis- 

t o r t i o n  effect6 of t h e  incident  and scattered wave and exchange, 
In order  t o  subsequently &e these ~ 3 6 ~ l t . 8  nore precbe,it i.8 necee- 
sary t o  add the  accounting of atom polar i sa t ion .  A s u b s t a n t i a l  number 
of works have been l a t e l y  devoted t o  this subjec t  (for example [2, 51 ), 
but the introduct ion of the po la r i t a t ion  ma8 usually conducted by r 

s p e c i a l  and of ten  somewhat a r t i f i c i a l  aq. 

* [&DIAL"YYE U R A V " I Y A  TFORII ATOM" S n > L i r N O v E N ~  

* *  I n s t i t u t e  of Physics in the name of P.19.Lebedev of the UgSR 
Academy of Sciences, 



2. 

The polar iza t ion  po ten t i a l  f o r  the  e l a s t i c  ectittsrbg wa 

introduced i n  a general form in C63 on the bas* of t h e  formal c o l l i -  
sion theory&he polar iaa t ion  po ten t i a l  $8 introduced in the f inst  
p a r t  of t h i8  work for the  e l a s t i c  ae w e l l  as i n e l a s t i c  scattering 
on the baeis  Of the standard syetem of radial  equations by w a y  of 
its s o l a t i o n  by t h e  method of consecutive approximations. Some of t h e  1 

approximate representat ions of th ie  po ten t i a l  are diecussed in the \, 
second par t  of the current  paper, 

I 
For the sake of simplicity reference rlll be made to  neu t r a l  

titoms in a l l  subsequent considerations;  however, all these resulte 
are e a s i l y  generalieed t o  ion6 by na,y of the well. knom modification 
of boundary conditions. 

The e f f e c t i v e  cros8 sec t ion  of the  procees ao- a may be 
w r i t t e n  i n  t h e .  f o r m  

.. . 

where r -  
from the atom i n  the state a (a = YL S) and the outer  e l ec t roa  i n  the 
s t a t e  kz, are the system@e over-all moments. - _ _ _ _  

and nant i6psnetr icalm (&=so+ i) 
the ey8metr7 proper t ies  of system's radial functions,  The initial &ate 

is denoted 
t i c  of outer  e lec t rons  @ wave functions 

is a complete se t  of quantum numbers of the 6y6tOa 

: ) I  ( - J  

The eigne 2 correspond t o  the  symmetrical^ &=so- 
__I 

. scattexdng in correspondence with 

the index 86m. The p-matrix ie defined by t he  rsynpto- 

The htegro-differential equations obtained i n  t he  work Ll] 
for these funct ioas ,  have the form : 
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Here L,. i s  the psual&cultree-Fock operator: 

The po ten t i a l s  Or and Iff,-, include the direct ae w e l l  ae 
the exchange in t e rac t ion ,  i . e .  they  are i n  the  general  cusc the 
i n t e g r a l  operators  : 

m 

a 

where r< and r )  are respect ively the g r e a t e r  and the  lesser of 

the  values of r and rl, Pnt a d  Pnttt are t he  radial funct ions of  
atom'e opt icu l  e lectron.  

The diagonal potentials &==V#+Vrr, where Urr describe6 
t h e  Bartree-Fook i n t e r a c t i o n  with the op t i ca l  e lec t ron ,  and I8 detelc 
mined by the  formula (51, and Vy, - 
of atom residuum. To curtail  the wr i t ing  the d e f i n i t i o n  of radial in- 
tegrals ys(r) is somewhat d i f f e r e n t  than In the  paper c11. fn part icu-  
lar, Rydberg u n i t s  are used everyrhere fo r  energy. Ime formulae for 

t h e  in t e rac t ion  r i t h  e lec t rone  

a, f3, r, ,  obtained i n  c13, are given in the  Appendix 1. 

s 
CR,B,].- If the  inc ident  wave is f la t ,  there  e x i s t  a pu l t i t ude  of 

values of powith the given ao, but wi th  a l l  kinds .of t o & ~ o .  !phis 
is talcen i n t o  account when der iving f o p u l a e  for cro88 6 e t t i o ~ .  In 
p a r t i c u l a r ,  when computing d i f f e r e n t i a l  and H- sublevel exc i t a t ion  
c ros s  sec t ions ,  t he re  occulp8 a rave in te r fe rence  wi th  rar ioua 1,. Bpt 
a'fter t h e  type ( lb fomnula  iS writ ten,  all p a r t i a l  inc ident  wave6 MY 
be cbnsidered independcnt,ahen resolving the r a d i a l  equations (2). 
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The equation (21, account being taken of boundary conditions 
(31, may be rewritten i n  the form of integral equations, L e t  t, F 80 

two lineralg independent aolutione of  a hombgenotls equation, and l e t  

30 

Q (r, re be the Green function t 

d t h  5 and ? 6atisfying the boundary conditione : 9 (a)= 0 ,  

O(r. f l )  = -F(r<)F(rs), (9) 

&p= O(r, r‘)q(r‘) d f .  ’ (16) 

L e t  UB introduco beside6 the integral operator bt 
_ _  

I r  

Then, the system of integral equations, equivalent to fornurse (2) end 

(31, may be written An the forms 
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L e t  tlie now make w e  of consecutive approximation nethod f o r  
the so l a t ion  of the  system of i n t e g r a l  equation8 (111, taking f o r  
i n i t i a l  : ==Fro8rr,. We 6 h d l  have i n  the first approximation : 

- 
Ff!j = Fr; GrUrr,Fra, 1.3) 

' (r#ro) 

This 5s the known f i r s t  approdmation of the d i s to r t ed  wave aethod. 
The functions gP a m  wave frrnctionrr of e l a s t i c  s c a t f e r i n g ' i n  the 
Hartree-Foclr approxisation (&.e. in a s t a t iona ry  field Ur without 
aecounting the atom p o l a r i s a t i o n  by the outer  e lectron) .  If we replaee 
b y  by a free motion operator (io 0 .  i f  we drop dl tfr 1, we s h a l l  
obtain the f i r s t  Born approximatiom in the repreeentation of partial 
waved$. A t  the same time all q =  0 

I 

and 

- - 
G=9d7(qr); F==rRr(qr) (k2<O), i 1%) 

where J t  and h, are B4968el and H a n k 0 1  SphmiC4d funations,  and 
i.. and k- c f 

are t h e  corresponding functions of the f i c t i t i o t m  arguo6nt. 
Effect ing the following i t e r a t i o n s  and pursuing the p r o c e ~ ~  

t o  88 high ae desirable approximations, w obtain the exact so lu t ion  
i n  the form: 

F r = F f ) +  GrVrr.Tr* (16) 
m 

The correct ion for  the e l a s t i c  (bra)  and i n e l a s t i c  (r#I'.) s c a t t e r i n g  
._ 

has an i den t i ca l  form. &Vrra is the rerolvent of tho 8 p t e i  (11). 
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The sense of Vrm is par t i cu la r ly  c l e a r l y  seen from the  expression 
f o r  the amplitude of the  i n e l a s t i c  s c a t t e r i n g  : 

As may be seen, Vrfodesc f ibe~  the cor rec t ion  f o r  t h e  mean po ten t i a l  
a t  the  expense of t he  cor re la t ion  of e lec t ron  notion ( f l o w ) .  That is 

why VrrO m y  be ca l led  t h e  polar i sa t ion  poten t ia l  (generalized).  
The nonlocal character  cons t i t u t e s  its e s s e n t i a l  p e c u l i a r i t y :  

may be represented i n  the form of seriee by powers U r r  : 
V f O  i k  

V 

The kernel of the operator om,. . . . . . . rm- irM obviously has the  fonr: 

Let  us f i n a l l y  note still another e s ~ e n t i a l  circumstance. 
According t o  the e rpress ion  (8a), the functione ? are complex. 
L e t  us introduce the  real function 
of the  e l a s t i c  c o l l i s i o n  will be wr i t ten  in the  form 

F=&F'. Then t he  matrix element 

The i n t e g r a l  i n  the right-hand part is real., and, as a rule, negative 
( a t  l e a s t  in the  ad iaba t ic  approximation). That is why the  polar isa-  
t i o n a l  correct ion is somehow sh i f t ed  in phsee by a quant i ty  '1 rela- 
t i v e  t o  the f i r s t  approxination. Formula (18) a t t e s t s  t o  the  f a c t  t h a t  
such shift is absent Cor the  i n e l a s t i c  scattei-ing. 

0 
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3. REPRGSEKPATIOI OF THE ELASTIC SCATTERIWG 

In the above-presented formulas *e polar i sa t ion  w a 8  f a c t u a l l y  
taken I n t o  account within t h e  freuueuork of the  per turbat ion theory, 
L e t  us consider nor another representat ioh i n  which exact  wave func- 
t i o n s  of e l a s t i c  s c a t t e r i n g  Tp are u t i l i z e d  I n  an a r b i t r a r y  state r. 
Such a function cons t i t u t e s  t he  so lu t ion  of t he  SchMdinger one-part 
e quatlon : 

[Lr=clpr+W 5$ -0, (22) 

where 8 I s  the exact phase of s c a t t e r i n g  
r i z a t i o n  poten t ia l .  To determine it, r e  s h a l l  talre advantage of the  
f a c t  tha t ,  a c c o r a g  t o  the  expressions (13) and (16). ") 
presented ia the  forrm 

and vf ie t he  new pola- 

may be re- f 

s- Fr+ drvnsr. 4 21) 

On the  o the r  hand, the equation (22) nay be rewritten in the  form of 
i n t e g r a l  equation 

Juxtaposing the equation6 (24) and (251, we obta in  the  equataon for vpq 
- - -  

vr = Vrr - Vr& vrr, (26) 

whence, equating the  terms of i den t i ca l  order,  re f i n d  

where  the 
including 

s t roke  a t  the sum points, as above, t o  the  absence of term 
the  diagonal po ten t ia l s  Ur r , The addi t iona l  condi t ion 

l k  
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notably diminishes t h e  number of terms i n  t h e  sum. The expres- 
s i o n  (27) is va l id  f o r  any r ,  including r . ~  ro. 

We s h a l l  pass now t o  the i n e l a s t i c  sca t te r ing .  Its amplitude 
may be writ ten by th ree  equivalent methode: 

i 28a) 

Obvioucly , th is  corre,t;;onds t o  ninitisllt, **find," and ltsymmetricf* 
inc lus ion  of polarication. The three expressions (28) are equivalent 
Only i n  the case of exact so lu t ion  of the problem. When t x s i n g  appro- 

ximate functions 9 or potent ia l s  cy, these formulae lead t o  d i f f e r e n t  
results. L e t  lt8 note tha t  an analogus s i t u a t i o n  occur6 in regard of 
exchange in t e rac t ion  (known "poetn and wpFlorn approximations ) . 
method analogus t o  t h a t  t t t i l ie ied when der iving the  expression (26), 
but  the computations are somewhat more cumbersome. We obtain 88 a 

r e s u l t  the fo1lov:ing equations : 

The connection of potent ia l s  vm and vr~,  is obtained by a 

we f ind  
rlrk 

Subs t i t u t ing  here t h e  expansion by powers U 
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L e t  us note t h a t  the nondiagonal po ten t i a l s  v a n d  V coincide 
in the 2nd order,  and t he  diagonal ones - t o  t h e  3rd order. We shall 
c a l l  t he  poten t ia l s  9, ae w e l l  86 V polar iza t ion  poten t ia l s .  

The representat ion of the exact problem of e l a s t i c  scattering 
i n  the forn of a three-d i~ens ione l  one-part Schrodinger equation 
made i n  t h e  work C61 in a more abs t rac t  form. There too  were formula- 
ted var ia t iona l  methods for the  determination of  e~. Certain p a r t i a l  
expressions for t he  polar izat ion poten t ia l  of t he  2nd order were given 

i n  Temlcin works E3 - 53 A nondiagonal po lar iza t ion  po ten t i a l  w a s  elso 

introduced i n  t h e  work c93, but i n  a form somewhat d i f f e r e n t  from t h e  
one u t i l i z e d  above. 

 sa^ 

4. APPROXIMATION OF TRO STATES 

To i l lustrate the various representat ions it is useful t o  con- 
s i d e r  a two-level system. In the representat ion of the  d i s to r t ed  wavee 
F‘ the  t r a n s i t i o n  amplitude rill be m i t t e n  in the form: 

m 

where is  the sum of  terms of odd o rde r :  vlo - -  
V i o s  Ui&oUolGlUto+ . . . 

A t  t h -  erne time, in nonsynmetrical representat ione 
s c a t t e r e d  waves ~9,0@AcLp~-0 ,  T. e. 

(32) 

(33) 

f e lm t i ca l ly -  

(31j 
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A t  t h e  same time t h e  polar iza t ion  is f u l l y  accounted f o r  i n  
the  function6 F. Moreover, i n  diagonal po ten t i a l s  only  t h e  terms of 
the  2nd order  are d i f f e r e n t  from zero: 

A symmetrical represefitatioa of the expression (288) in case of a 
two-level problem is l e s s  p rac t i ca l ,  for i t  l eads  t o  overestimztion 
of the polar iza t ion  i n  uave functions ensuing -q$,,#o. and namely : 

'?io= - vier. 

It m u s t  however be underlined t h a t  a similar resu;lt r e f e r s  only t o  
a two-level apororimation. I n  the presence of v i r t u a l  l e v e l s  the  sym- 
metr ica l  representat ion may r e s u l t  very useful.  

The representat ion of  e l a s t i c  s c a t t e r i n g  permits t he  subdivi-  
s i o n  of t r a j e c t o r y  d i s t o r t i o n  e f f e c t s  and - s p e c i f i c a l l y -  t he  tran- 
s i t i o n s  t o  be made in a more evident fashion. Generally speaking, t h e  

in t roduct ion  of but  only an approxhate  expression f o r  V r i n t o  t h e  

equation f o r  e l a s t i c  s c a t t e r i n g  is usually more appropriate  than t h e  

n t i l i e a t i o n  of t h e  per turbat ion theory w i t h  t h e  very same approximatt 
expreszion for V p p  

t h e  so lu t ion  of a type ( 2 ) -  or (11)- i n f i n i t e  system is replaced by 
t h e  so lu t ion  o f  independent equations ( 6 )  f o r  B and ?, and also 

( i n  the second representat ion)  of equation6 (221, Natural ly ,  i n  t h e i r  

genera l  form these transformations bear  a formal character ,  s i n c e  t h e  

d i f f i c u l t y  of  the so lu t ion  of  an i n f i n i t e  system are t ransfered  t o  
t h e  computation of a coxplex ~eriee. .Bowever,  t h e  physical sense of t h e  

equations with a polar iza t ion  poten t ia l  appears t o  be s i g n i f i c a n t l y  more 
descr ip t ive ,  Besides, t h e  formulation of approximate method6 f o r  t he  

p o t e n t i a l  is  i n  many case s i n p l e r  and more descr ip t ive  t h a n  for wave 
funct ions . 

Thus, thanks t o  the  introduct ion of  the polar iza t ion  po ten t i a l  
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11. PPPROXIMATE REZREsmATIOl?S OF TI€X FOL4RIZATIGN POTZNTIAL. 

1. Approximation of t h e  2nd Order. 

I n  t h i s  subdivis ion we s h a l l  l i m i t  ourselves  t o  the approxima- 
t i o n  of t he  2nd order  (%.e. t o  t h e  f i r s t  diseppearing apgroximation) 
f o r  the polar iza t ion  potent ia l .  A t  the  same time, as vas shonn above, 
t h e  expressions for V,vo, v' and ? coincide. For t h e  sake of defi-  
n i teness ,  ne s h a l l  write i n  the follov4.ng "p,,, 
brought up w i l l  be i n  an equal measure va l id  f o r  a diagonal po ten t i a l  
( a t  r= ro). 

t he  form of  a sum by a s i n g l e  s e t  of intermediate dis tances  (%Il): 

while the formulas 

Preserving only t he  term of 2nd order,  vpF,may be t w i t t e n  i n  

H e r e  a,. is a s e t  of atom quantum numbers, t, is the  o r b i t a l  quantum 
number of t he  outer  e lectron.  The quantum numbers L 

niined by the  law of energy a n d  mo%ent preservat ion,  and thus do not  
e n t e r  i n t o  the  number of summation indices .  I n  pEr t icu lar ,  

ST; 5 are deter- T' 

k,2= k*2+ E() -  P I  = k* + E - PI r  (37) 
ahem E ,  and tl are the  energies of t h e  i n i t i a l  m d  i n t e rmed ia t e  

states of t h e  atom. 
Formula ( 3 6 )  may be wr i t ten  some-xhat d i f f e r e n t l y ,  t ak ing  

advantage of the  s p e c t r a l  repreeentation of the Green func t ions :  

where the sumrstion spreads over  all t h e  operator 's  L eigenvalues 
( including the continuous spectrum; see formulae (4) and (7 )  ). Substi-  
t u t i n g  the e q u a l i t i e s  ( 3 7 )  and ( 3 8 )  i n t o  the formula (361, w e  ob ta in  

p1 

. ./. . 
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The e x p r e s ~ i o n  f o r  'sy r e d i a  inte:;rals is brought up in VS 
Addendum 2. 

2 . ADIABATIC .tZYFIiOXIMATION. 

I n  a g r e a t e r  par t  of practical. ca lcu la t ions  the 80- 

called adiabatic ap2roximation is being u t i l i zed .  It may be obtained 
by assuming t h e  Green function in intermediate s ta te  equal t o  

1 
Gr,(r, f) = - A0 - E(r-r'). 

T h i s  expression follows outr ight  fro= t h e  s p e c t r a l  representat ion of 
t h e  exprecsion (381, if re take advantqye of the coEpleteness of 
functions'  F assembly, assuming then kI2-k?<<er-&. Obviously, we 

may take f o r  k1 &) w i t h  equal succe66, Ae=el-eo and AE=EI-&. 

r i z a t i o n  p o t e n t i a l  is only connected w i t h  the  exchange e f f ec t s  (see 

Addendum 2). L e t  UB pause at  fur ther  length on t h e  met important pa r t i -  
cular case - diagonal po lar iza t ion  po ten t i a l  without accounting the  

exchange. According t o  formula ( 3 6 )  and ( P. II), we then have 

Q 

I n  the  adiabatic approximaticn the  %onlocali ty " of the pola- 

For greater c l a r i t y  of the  following here and f u r t h e r ,  radial i n t e g r a l s  
are denoted yz 

functions of t h e  op t i ca l  e lec t ron  f ac tua l ly  depend on all t h e  quantum 
numbers of t he  atom. 

ins tead  of 9 which also underlines t h a t  r a d i a l  
-l Ui 

The po ten t i a l  v p  in (41) d e ~ e n d s  on t h e  quantum numbers of the  
I f  w e  s u b s t i t u t e  

.. 
and 7 .  and on t h e  t o t a l  moment L 11 l? 

o u t e r  e lectron 
i t  by the expression averaged by LT, the  sumring up by I may be 
c l e a r l y  f u l f i l l e d  u t i l i z i n g  formulae from t)le Addendum 1. 

1 
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As a result  we obtain (u=Lps'pntf&~, LGp 
i n i t i d  i o n )  : 

being the  mosents of t h e  

where e 
2%- pole t r a n s i t i o n  depending upon the  moments; in the general  ca6e 
i t  may be wr i t ten  using 6j 'and 33 - symbols : 

is the p a r t  of the expression f o r  the o s c i l l a t o r  of the 

The s-tion by 9 i n  t he  equal i ty  (42) mag be replaced by 
the so lu t ion  of an anxi l ia ry  equation with the aid of a well-known 
procedure (see f o r  example t h e  orrk in ref. C63 1. ASSUme t ha t  the 

functions P (1) are the  solution6 of the Bartree-Fock equation 
.1 

Kat - e P a ,  = 0, (44) 

and tha t  the function 9(1', r )  is the so lu t ion  of the inhomogenous 
e quation 

m 

(here the operator L acts on the coordinate r:): 

The s u b s t i t u t i o n  cp(r', r)=g(r, r)Pa(f)' 
c1 

is easy t o  effect  i n  t he  equa- 

t i o n  (45). The function 8 .  satisfies t h e  equation 

(47) P. g-2 --s'+bLg== e 4; (f,  r )  

( t h e  der iva t ives  i n  theleft-hand par t  are taken b y r ' ) .  The operator 
&L = L - La ha8 a very simple form i n  cafiee offering i n t e r e s t .  

al 
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As 5,s ne11 knomm t h e  Hartree-Fock operator L depends on 
81 

t he  main quantum number 9 only through the  nondiagor-sl parameters 
e Inasmuch BS we do not take everywhere the nonorthoganili ty 
of atomic r a d i a l  functions into account, t h i s  dependence can be neglect- 
ed. Then, u t i l i s i n g  a method analogus t o  t h a t  used in t h c  aork C63, 

n1n 

we mag show t h a t  

and consequently, 

The-function g depends on t h e  states a and 3. If re neglect  t h e  

weak dependence of 6 on L1, and if w e  e f f e c t  t h e  summation by L1, 
w e  shall obtain 

A t  AL = 0 ( t o  t h a t  e f f e c t  i t  5.6 generally speaking necessary 
t h a t  8 ,  = 2 ;  L,. rL. ) t h e  equation (48) is resolved i n  quadratures: 

Let  us examine now the  behavior of Vr ( r )  at  r + o and r +-. 
In t he  f i r s t  case 
term with U = 0 ,  i. e. with 11= 2 and L1 =Lo Formula (49) gives  

3% (r) -r.* and t h e  basic role is played by the  



m 

In order  t o  estimate this qiiantity w e  s h a l l  pofitulate 

(A 
atom Y,(o)== - I/$ =. 

being the normalizing factor).  Then, we have for the neut ra l  

A t  r +a0 the t e r m  with x = 0 in 9, decreases exponen- 
t i a l l y .  A t  % # 0 ,  yz N r -x-l and the main role is played by t h e  

term'with X== 1, i.e,  with 5 rlt 1. From t h e  expression (42) w e  
obtain the w e l l  known expreesion: 

where b is the atom po la r i eab i l i t y ,  and f is the  force of t he  dipole 
t r a n s i t i o n  o s c i l l a t o r .  

tg4 (T-oo) 

a% 

It must be noted t h a t  although the  dependence 
is general ,  the  expression for the coef f ic ien t  b is only val id  af ter  

averaging va. by L T' 
In prac t i ca l  calculat ionsthe approximate expreseion of t he  form 

where ro 3: <r> ,  i. e. is equal. t o  mean radius f o r  t h e  op t i ca l  elec- 
tron, is of ten  u t i l i zed .  T h i s  formula give8 a correc t  asymptotic f o r  
va(r), but at r = 0 ,  va = - b/ r: . For hydrogen t h i s  quant i ty  ie 
equal  t o  - 0.8, w h i l e  the correct value is equal t o  - 1. The e r r o r  
becomes s i g n i f i c a n t l y  greater i f  f o r  t he  main term in the 6- (52) 
4, --t < E *  Thus, f o r  fl. b/r: = 1.1, while a most cor rec t  estimate 
g ives  I I $ , ( O ) l  =C 0.4, Generally, formula (53) apparently gives in most 
cme6 an overrated value forlv,(O)l . 
should be noted, t h a t  t h e  accounting of nonadiabaticitg leada ,  o s  v , i l l  

In connection with t h a t  i t  

c -  De Si~Qrrr teiov, tt ~ L S  Y ~ C ~ S  ga(~l  = C. 
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3. DISRUPTION OF ADIABATICITY 

In the  ada iaba t ic  approximation the Green function of  the  
compound state is assumed proportional t o  t h e  s - function (formu- 
l a  (40) . In r e a l i t y ,  t h i s .  function has a f i n i t e  width, which leads 

t o  the llnonlocalftJ" of the polar iza t ion  po ten t i a l  and may, general- 
ly speaking, subs t an t i a l ly  r e f l e c t  u p o ~  t h e  results. For the  quali ta- 
t i v e  c l a r i f i c a t i o n  of the  role  of t h i s  effect  w e  may u t i l i z e  f o r  Gpl 

the  Born approximation w i t h  

according t o  formula (151, we then have for the energe t ica l ly  
ll 3= 0. 

tanat t ainable intermediate s t ate6 

4rZ= -&?=el -eo-&oZ=e, -e-@, (55) 

and f o r  energe t ica l ly  a t ta inable  intermediate states 

k1 
It m u s t  be s t r e s sed  t h a t  the u t i l i z a t i o n  of t h e  functions 0 or G 
i n s t ead  of the exact function Or 
effect  on polar iza t ion  poten t ia l ' s  kernel llsmearing out*l, without 
influencing t h e  character  of in te rac t ion .  It may therefore  be expect- 
ed t h a t  such an approximation w i l l  be applicable also for r e a l  quan- 
t i t a t i v e  calculations.  

q1 
ha6 only a s l i g h t  smoothing 

Let  UB consider again the ca8e of diagonal po lar iea t ion  poten- 
tiel rrithout t he  exchange terms, aseuming a t  the eane time the energy 
of the  outer  e lec t ron  t o  be BO lor tha t  $* < 0 f o r  all intermediate 
l eve l s .  The adiabat ic  approximation 
i n  t h i s  region. Its ineffect iveness  a t  high energies becomes obvious. 
Inasmuch ak c) does not depend on 2,. we may again e f f e c t  t h e  ave- 

raging by LT. 

general ly  applied prec ise ly  

(11 
Then, instead of the  erpression (42) we s h a l l  obtain 



I -  

. 

the  nonlocal operator x i t h  a kernel  

F'ig.l shows Gn(.r,r*) at r = l  and two values of  q. 
It m u s t  be noted f i r s t  of a l l  t h a t  

whi le  in t h e  adiabat ic  a,.proximation the  left-hand pa r t  of the 

expression (58) is equal t o  the unity. For not too s m a l l  values of 

when the wid th  of 

the  function 0 Q1 
still is rather s m a l l ,  w e  may 
u t i l i z e  86 a first correct ion 
the  adiabat ic  po ten t i a l ,  nul ti- 
p l i ed  by the f a c t o r  ( 5 8 ) .  L e t  
u6 note t h a t  t h i s  f ac to r  is 
eero at r = 0 and i t  is grea- 

t e r  than the uni ty  a t  g rea t e r  r ,  
s ince  t$c~r, 

The width of 0. increa- 
6es with t h e  decrease of 

I c S 

q1 F?G. 1 
%(k*+Ae) and at ql+o 

= mintr, r*], i . e . i t  has 
nothing i n  conucon with t h e  8- function. In pes t icu lar ,  the i n t e g r a l  
( 5 8 )  diverges. If G Q ~  varies ro re  slowly t h a n  y Y r )  and F, (r),  
the  t r a n s i t i o n  t o  the local po ten t i a l  is generally inpossible ,  

for t h e  e l a s t i c  s c a t t e r i n g  is given by t h e  l i n e a r  combination of 
i n t e g r a l s  of t he  type 

%l 

In the ad iaba t ic  approxircation the  polar iea t iona l  correct ion 

l w ( ~ ) ~ r ( r ) 1 2 & .  
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In another boundary case %-+ 0 w e  have 

The o s c i l l a t i o n s  of  the subintegral  function may play an irnportant 
p a r t  i n  the last in tegra l .  We thus may expect a decrease of polariea- 
t i o n  effects by comparison w i t h  the adiabatic approximation. Whether 

or not t h i s  effect or t he  correction f o r  t h e  normalization ( 5 8 )  w i l l  

predominate - it depends upon the concrete conditions,  
Usually i t  is required as a condition of a p p l i c a b i l i t y  of the 

ad iaba t ic  ap-roximation t h a t  the ve loc i ty  of the  outer  e lec t ron  be 

much lower khan t h a t  of the  opt ica l  e lec t ron ,  i. e. k2 
requirements etem from the above-conducted analysis  : 

6 . St i f f e r  

1)  qP=Ae, i. e. k?<<Ae<e; 

2) q,w; 

where a is t h e  dimension of the region in which r 5 ~  
s iqn i f i can t ly .  The value of  91 depends on the energy of t h e  intenne- 
diate state El. That is rhy the conditions of adiabadici ty  may be 

f u l f i l l e d  f o r  some intermediate states, and not  f o r  the  others.  
In fact  however, i t  is usual ly  possible t o  separate  i n  the  sum by 
i n  the forPmla (24) one main term, which s impl i f i e s  very much the cal- 
cu la t ions  . 

( r )  varies 1 

c1 

The author expresees its deep appreciat ion t o  I. I. Sobel'man 
for discussing the  present paper. 

e*+ THE END *+*  

Translated by ANDRE L. BRICHAloT 

under Contract No. NAS-5- 2078. 
24 October 1963 

Addenda 1 and 2 follow., 
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A P P E N D I X  

ADDENDUN 1 

The expression for . the poten t ia l  Upp includes the parameters 
3.m, u;~, ,  &. . Presented below are the formulae for these ?ammeters 

where el and 
equation for the  o p t i c a l  electron. However, i t  should be noted t h a t  

the equal i ty  if formula (Ad.1) takes place only approximately (with 
a precision t o  the var ia t ion  of polar izat ion energy of the  ator,ic res i -  
duum at  opt ica l  e l ec t ron  t r ans i t i on ) .  

a r e  t h e  energet ic  parameters of the  Hartree-Fock 

If 

where Lp Sp are the moments of t he  o r ig ina l  ion, 
of the op t i ca l  and outer  electrone , IS - the  moments of  the atom 
and I@r the t o t a l  moments of the system, then 

are  t he  moments 

I n  cme Lp r c ~  S = 0 (one electron beyond the  f i l l e d  s h e l l s )  p&.=vlf,.=l. 
P I 

In  a more general case 1 1 ; ~ = = 6 ~ ~ ( -  l ) ' + L + L ' ( 2 L +  1 ) q 2 L t +  
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the atom has i!i t h e  state 2 E equivaLent e lec t rons  I 
and coneequently, the term LpSp is not given, then &-+ and v& 

ought t o  be averaged by LflP 
should be subs t i t u t ed  i n t o  the mean values 

P i. e. ins tead  of (Ad. 4) and 

I 

where G1& 

by LpSp, utilizing t he  coef f ic ien ts  GiZ.p,  m u s t  be effected i n  exact- 
l y  t h e  same ray, provided there  e x i s t  in the state a' seve ra l  equi- I 

are the Racah genealogical coef f ic ien ts ,  The averaging 

I 

. valent  electroxm in the outer s h e l l .  1 

We shall bring fo r th  some p a r t i c u l a r  values of t he  coe f f i c i en t s  
a and f. AB arag be seen from formulae (Ad.3). (Ad.41, tx is not 
dependent on s p i n  ( i f  we do not consider the  se l ec t ion  rule S =US*),  

while f may be wr i t ten  i n  the  form of a product of independent mul- 
t i p l i e r s  : 

g-B(s)B(L). (Ad. 6 )  
A t  S r O  

P 
Sr-0; 1; b(S) = (- l)h+'.  (Ad. 7) 

1 
2 

' .. At Sp= - , th ree  types of transitions are possible:  

* 1 3  3(sr++) s r + -  1 

(-1) 2.  (Ad.8 ) 2 
3L-3L'; STET; 2;  @(S)= 
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Let  us examine now t h e  o r b i t a l  par t ,  l i m i t i n g  ourselves t o  t:?e 

case Lp = 0. 

from zero. We u t i l i z e  t h e  denotation g I 2 5 + 1; g *  9 2 

lo The t r a n s i t i o n  S - S : .l=l'==O; l = l ' - L ~ , ;  

A t  the  same t i m e  L = , L1 = 1' . The coe f f i c i en t s  aFr and 
are always equal t o  1. Written ve lor  are the coe f f i c i en t s  d i f f e ren t  

+ 1. 
- -  

2. Trans i t ion  S - P 

In t h e  2nd order  of the  per turbat ion theory, V 
the  eum by Fl from Urr,ro: 

rJ-0 

(Addo 5a 

ADDE3DUM 2 

is expressed by 

(Ad. 10) 

The r a d i a l  i n t eg ra l s  y;, and Y ; ~  are determined by t he  formulae 
and (Ad. 5 ) ; as t o  I&, i t  is obtained from t he  equal t y  ( 5  ) 

by s u b s t i t u t i n g  G (r,r*) for F (rl). From the  last determination 
I t  is evident t h a t  

J!L Pl 
p>G is dependent upon two variables. 



In the ad iaba t ic  approximation 

and the in t eg ra t ion  over r' 
t i a l  ( the  first term of the right-hand pa r t  of formula (Ad. 10) ) 
mes local, while the exchange terms preserve t h e i r  nonlocali ty.  
We obtain 

can be effected. The polarization poten- 
beco- 

where the denotation 

has been introduced, and K r  are kerne ls  of the  i n t e g r a l s  (5a) and (56  ), 
while the foro  of the kernel  mus t  correspond i n  the  respect ive term 
of ( A d . l l )  either to  the coef f ic ien t  3L or . P 

END OF THE ADDENDA. 

. Reference6 . . 
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